LaTeX Glossary


My.SUPA has been setup to allow maths to be written quickly using LaTeX notation. This can be included anywhere you see a text box in your course area -- including news or social forums, web pages and wikis. The format for entering LaTeX in My.SUPA is to wrap the code between two pairs of dollar signs. $$ a=b+c $$


If you are looking at this for the first time, please read the entries under 01 Getting Started for an overview. The list of entries may be viewed by categories or alphabetically.

01 Getting Started
| 02 Arithmetic expressions | 03 Font Styles | 04 Delimiters
05 Spaces
| 06 Symbols | 07 Relations | 09 Structures | 10 Feynman Diagrams
11 Other LaTeX Software
Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

Page:  1  2  3  4  5  6  7  8  9  10  ...  12  (Next)
  ALL

\

\_ (where _ is blank)

  • Ordinary whitespace to be used after a dot not denoting the end of a sentence
  • After commands without parameters use \~ (tilde) instead in order to avoid browser specific problems

\,

  • \, inserts the smallest predefined space in a formula
  • Equivalent: \hspace{2}
  • Ex.: $$a\,b$$ gives a\,b
  • Ex.: $$a~\hspace{2}~b$$ gives also a~\hspace{2}~b

\;

  • \; (backslash semicolon) inserts the third smallest predefined space in a formula
  • Equivalent: \hspace{6}
  • Ex.: $$a\;b$$ gives a\;b
  • Ex.: $$a~\hspace{6}~b$$ gives also a~\hspace{6}~b

\:

  • \: inserts the second smallest predefined space in a formula
  • Equivalent: \hspace{4}
  • Ex.: $$a\:b$$ gives a\:b
  • Ex.: $$a~\hspace{4}~b$$ gives also a~\hspace{4}~b

\/ (backslash slash)

  • \/ (backslash slash) avoids ligatures
  • Ex.: $$V\/A$$ gives V\/A in contrast to $$VA$$ which gives VA

\~

  • In order to prevent some browser specific problems with whitespaces, it is advisable to use ~ (tilde) as the whitespace instead of the normal blank key (in places where whitespaces are mandatory, e.g. after commands).
  • Ex.: $$\frac~xy$$ to produce \frac~xy
  • Ex.: $$\sqrt~n$$ to produce \sqrt~n

\hspace{n}

  • inserts a space of n pixels
  • Ex.: $$f(x)\hspace{6}=\hspace{6}0$$ gives f(x)\hspace{6}=\hspace{6}0
  • can be combined with the preceding command \unitlength{m}(default: m=1px) , which defines the applied unit
  • Ex.: $$\unitlength{20}a\hspace{2}b$$ gives \unitlength{20}a\hspace{2}b , i.e. a space of 20x2=40px

\LARGE (all capital letters)

  • Everthing following the \LARGE command will be output in the largest predefined font size until the system encounters another font size command.
  • Note: This command is case sensitive, since large, Large and LARGE are different sizes! 
  • Ex.: $$\LARGE~3x$$ gives \LARGE~3x

\Large (L capital letter)

  • Everthing following the \Large command will be output in the second largest font size until the system encounters another font size command.
  • Note: This command is case sensitive, since large, Large and LARGE are different sizes! 
  • Ex.: $$\Large~3x$$ gives \Large~3x

\large (all lower case letters)

  • Everthing following the \large command will be output in the large font size until the system encounters another font size command.
  • Note: This command is case sensitive, since large, Large and LARGE are different sizes! 
  • Ex.: $$\large~3x$$ gives \large~3x

\normalsize

  • Everthing following the \normalsize command will be output in the smallest predefined font size until the system encounters another font size command.
  • \normalsize is the default font size, i.e. the size automatically chosen if there is no font size command
  • Ex.: $$\normalsize~3x$$ gives \normalsize~3x

\qquad

  • inserts a double space of current character set size
  • Ex.: $$a\qquad~b$$ gives a\qquad~b

\quad

  • inserts a space of current character set size
  • Ex.: $$a\quad~b$$ gives a\quad~b

\small

  • \small
  • Ex.: $$\small~3x$$ gives \small~3x

\tiny

  • Everthing following the \tiny command will be output in the smallest predefined font size until the system encounters another font size command.
  • Ex.: $$\tiny~3x$$ gives \tiny~3x

A

absolute font sizes (overview)

Absolute Font Sizes
CommandExampleResult
\tiny$$\tiny 3x$$\tiny 3x
\small$$\small 3x$$\small 3x
\normalsize (default)$$\normalsize 3x$$ or just $$3x$$\normalsize 3x
\large$$\large 3x$$\large 3x
\Large$$\Large 3x$$\Large 3x
\LARGE$$\LARGE 3x$$\LARGE 3x
   

\huge and \Huge are not supported by the mimeTeX filter

  

alpha (lower case greek letter)

$$\alpha$$ gives \alpha

angle bracket

  • Syntax: \left<...\right>
  • Ex.: $$\left<f,g\right>$$ gives

\left

arithmetic operations

  • Type arithmetic operations and "=" as usual.
  • Exp.: $$f(x)=x-2b+(3a/c)$$ gives

f(x)=x-2b+(3a/c)

  • See also keyword "fraction" for extended capabilities.

array

  • Syntax for an n-dimensional array:
    \begin{array}a1&...&an\end{array}
  • Ex.: $$\begin{array}a_{\fs{0}1}\fs{3},&a_{\fs{0}2}\fs{3},&a_{\fs{0}3}\end{array}$$ gives

(\begin{array}a_{\fs{0}1}\fs{3},&a_{\fs{0}2}\fs{3},&a_{\fs{0}3}\end{array})

B

beta (lower case greek letter)

$$\beta$$ gives \beta

braces

  • Syntax: \left{...\right}
  • Ex.: $$M=\left{a, b, c\right}$$ gives

M=\left{a, b, c\right}

C

cdot (multiplication)

$$a\cdot~b$$ gives a\cdot~b

chi (lower case greek letter)

$$\chi$$ gives \chi

constants

  • Numbers in formulas are interpreted as constants and they are rendered in non-italic roman font face, which is a widely used convention.
  • Following this convention, variables are shown in italic.
  • Exp.: $$f(x)=3a+x$$ gives

f(x)=3a+x

contour integral

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for the contour integral symbol:

$$\bigoint_{0}^{\infty}$$   gives  

\bigoint_{0}^{\infty}

and

$$\oint_{0}^{\infty}$$   gives 

\oint_{0}^{\infty}

  • Use font size commands for a nicer picture:

$$\LARGE\bigoint_{\small0}^{\small\infty}$$   gives  

\LARGE\bigoint_{\small0}^{\small\infty}

and

$$\large\oint_{\small0}^{\small\infty}$$   gives 

\large\oint_{\small0}^{\small\infty}

coproduct

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Note: mimeTeX seems currently only to support the \bigcoprod command.
  • Syntax for coproduct symbol:

$$\bigcoprod_{i=k}^{n}$$   gives  

\bigcoprod_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigcoprod_{\small{i=k}}^{\small~n}$$   gives  

\LARGE\bigcoprod_{\small{i=k}}^{\small~n}

D

delimiters (overview)

Delimiters (parentheses, braces, brackets. ...)
CommandExampleResult

\left(... \right)

$$2\left(a+b\right)$$2~\left(a+b\right)
\left[... \right]$$\left[a^2+b^2~\right]$$\left[a^2+b^2~\right]
\left{... \right}$$\left{x^2, x^3, x^4,... \right}$$\left{x^2, x^3, x^4,... \right}
\left\langle... \right\rangle$$\left\langle a,b~\right\rangle$$\left\langle a,b~\right\rangle
\left| ... \right| $$\det\left|\array{a&b\\c&d}\right| $$\det\left|\array{a&b\\c&d}\right|
\left\| ... \right\| $$\left\|f~\right\|$$\left\|f~\right\|

\left{ ... \right.

(note the dot!)

$$f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$$

(\rm switches to roman style)

f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.

\left.{ ... \right\}

(note the dot!)

$$\left.{{\rm~term1\atop\rm~term2}\right}=y$$\left.{{\rm~term1\atop \rm~term2}\right}=y

Note: The delimiters are automatically sizes.

Delta (upper case greek letter)

$$\Delta$$ gives \Delta

delta (lower case greek letter)

$$\delta$$ gives \delta

div (division)

$$x\div~y$$ gives x\div~y

double vertical line (norm symbol)

  • Syntax: \left\|...\right\|
  • Exp.: $$\left\|af\right\| = \left|a\right|\left\|f\right\|$$ gives

\left\|af\right\| = \left|a\right|\left\|f\right\|

E

epsilon (lower case greek letter)

$$\epsilon$$ gives \epsilon

escaping the TeX filter

  • With two triple $'s embracing an expression you can make the filter to escape and the code itself is shown (with two embracing double $'s).
  • Ex.: $$$a^2$$$ produces $$a^2$$, i.e. prevents the filter to render it as a formula gif.

eta (lower case greek letter)

$$\eta$$ gives \eta

F

Feynman Diagrams using LaTeX

feynMF and feynMP is a tool made by Thorsten Ohl to draw Feynman diagrams in LaTeX.

In his paper, [Ohl 1995], he explains how his package along with LaTeX and Metafont can be used to draw such diagrams.

This package has been installed on the SUPA web server, and My.SUPA has been modified to allow such diagrams to be shown in course pages, wikis and forums.

$$
\unitlength = 1mm
\begin{fmffile}{simpletwo}
\begin{fmfgraph}(60,45)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{fermion}{i1,v1,o1}
\fmf{fermion}{i2,v2,o2}
\fmf{photon}{v1,v2}
\end{fmfgraph}
\end{fmffile}
$$

\unitlength = 1mm \begin{fmffile}{simpletwo} \begin{fmfgraph}(60,45) \fmfleft{i1,i2} \fmfright{o1,o2} \fmf{fermion}{i1,v1,o1} \fmf{fermion}{i2,v2,o2} \fmf{photon}{v1,v2} \end{fmfgraph} \end{fmffile}

Note all examples using feynmp articles need to be wrapped in the following code to start a new feynman diagram environment at a sensible size.

$$ ....... starts LaTeX interpretation
\unitlength = 1mm
\begin{fmffile}{tmpfile} ..... temp name does not matter
\begin{fmfgraph*}(40,30) ..... increase x,y size of diagram here
... example goes here ...
\end{fmfgraph*}
\end{fmffile}
$$

formula box

$$\fbox{x=\frac{1}{2}}$$  gives

\fbox{x=\frac{1}{2}}

fraction

  • Syntax: \frac{numerator}{denominator}
  • Use font sizing commands for specific sizing if you don't want the predefined one to be taken.
  • Ex. (with predefined sizing): $$f(x,y)=\frac{2a}{x+y}$$ gives

f(x,y)=\frac{2a}{x+y}

  • Ex. (with specific sizing): $$f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}$$ gives

f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}

  • You may nest fractions as much as you want.
  • Ex. (nested fractions): $$\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$$ gives

\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}

Function names

Function names supplied by LaTeX:

\arccos \cos \csc \exp \ker \limsup
\arcsin \cosh \deg \gcd \lg \ln
\arctan \cot \det \hom \lim \log
\arg \coth \dim \inf \liminf \max
\sinh \sup \tan \tanh \min \Pr
\sec \sin

G

gamma (lower case greek letter)

$$\gamma$$ gives \gamma

Gamma (upper case greek letter)

$$\Gamma$$ gives \Gamma

greater than

$$x>y$$  gives

x>y

greater than or equal

$$x\ge~y$$ or $$x\geq~y$$ gives

x\ge~y

greek letters (overview)

Simply write \greekletter for lower case and \Greekletter for upper case.

Here's a list of all known greek letters (Note: not all upper case greek letters are known):

Lower Case Greek Letters:

CommandFilter ExpressionResult
\alpha$$\alpha$$\alpha
\beta$$\beta$$\beta
\gamma$$\gamma$$\gamma
\delta$$\delta$$\delta
\epsilon$$\epsilon$$\epsilon
\varepsilon$$\varepsilon$$\varepsilon
\zeta$$\zeta$$\zeta
\eta$$\eta$$\eta
\theta$$\theta$$\theta
\vartheta$$\vartheta$$\vartheta
\iota$$\iota$$\iota
\kappa$$\kappa$$\kappa
\lambda$$\lambda$$\lambda
\mu$$\mu$$\mu
\nu$$\nu$$\nu
\xi$$\xi$$\xi
(!)$$o$$o
\pi$$\pi$$\pi
\varpi$$\varpi$$\varpi
\rho$$\rho$$\rho
\varrho$$\varrho$$\varrho
\sigma$$\sigma$$\sigma
\varsigma$$\varsima$$\varsigma
\tau$$\tau$$\tau
\upsilon$$\upsilon$$\upsilon
\phi$$\phi$$\phi
\varphi$$\varphi$$\varphi
\chi$$\chi$$\chi
\psi$$\psi$$\psi
\omega$$\omega$$\omega

Upper Case Greek Letters:

CommandFilter ExpressionResult
\Gamma$$\Gamma$$\Gamma
\Delta$$\Delta$$\Delta
\Theta$$\Theta$$\Theta
\Lambda$$\Lambda$$\Lambda
\Xi$$\Xi$$\Xi
\Pi$$\Pi$$\Pi
\Sigma$$\Sigma$$\Sigma
\Upsilon$$\Upsilon$$\Upsilon
\Phi$$\Phi$$\Phi
\Psi$$\Psi$$\Psi
\Omega$$\Omega$$\Omega

H

Help

Introduction to LaTeX

LaTeX (pronounced Lay-teck or Laytech) is a text processing language, designed to make it easy to typeset high quality technical documents. In the context of My.SUPA, it makes it easy to include mathematical expressions in forum postings. In this short introduction we'll cover some basic expressions to give you a flavour of the possibilities. There is a huge range of resources available for LaTeX and we'll give a short list of these at the end.

Getting Started - symbols

LaTeX expressions are indicated in My.SUPA by enclosing them in double dollar signs. So, typing $$1+2$$ gives the following LaTeX output: 1+2. Note that My.SUPA renders the LaTeX commands and creates an image as output.

The first useful thing that LaTeX can do is to translate commands mathematical symbols and characters. For example, $$\omega$$ gives \omega. These commands are case sensitive - $$\Omega$$ gives \Omega. Search for "greek letters (overview)" in this glossary to find a full list.

Formulae

Useful as using LaTeX to type symbols is, you can also use it to create complex mathematical expressions. In the following example, we'll create a finite integral from 0 to 5 of the function f(x). The command for an integral in LaTeX is \int. We can indicate limits to the integral by using the superscript command, ^, and the subscript command, _ . The complete command is then: $$ \int_0^5 f(x) dx$$:

 \int_0^5 f(x) dx

LaTeX recognises that we want to make 0 a subscript and 5 a superscript. What if we would like to use more than one character for our limits, for example integrating sine(x) in the following example?

 \int_0^{2\pi}\sin(x) dx

In this case we use the following set of commands: $$ \int_0^{2\pi}\sin(x) dx $$. Note that the 2\pi is enclosed in curly brackets to tell LaTeX that we want everything contained within to be made a superscript. We've also used in this example the standard function \sin.

Fractions

To use fractions in LaTeX, we use the command \frac, with 2 sets of curly brackets for the numerator and denominator. For example, \frac{1}{2} is written $$\frac{1}{2}$$. We can combine multiple commands together - for example, the quadratic formula can be written as $$x=\frac{-b\pm\sqrt{ b^2 - 4ac}}{2a}$$:

x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

where \pm gives \pm and \sqrt gives the square root symbol. Notice again how we enclose everything we want under the square root sign in curly brackets.

Matrices

Another useful feature of LaTeX is the ability to format matrices. To demonstrate the different parts of writing a matrix, we'll use the following example:

 \left( \begin{array}{cccc} a&b&c&d\\ e&f&g&h\\ i&j&k&l\\ m&n&o&p \end{array} \right)

The code for this is: $$\left(\begin{array}{cccc}a&b&c&d\\e&f&g&h\\i&j&k&l\\m&n&o&p\end{array}\right)$$. You can split this over several lines if you would like, but make sure that you don't put any spaces between the double dollar signs. Working from the outside in:

  • \left(... \right): tell LaTeX to put brackets round the enclosed code and to match the size of the brackets to match the contents.
  • \begin{array}{cccc} ... \end{array}: tell LaTeX that you're creating a matrix. This is called an environment. {cccc} indicates that you're making a 4 column matrix each of which is centre justified.
  • a&b&c&d\\...\m&n&o&p: these are the contents of the matrix. '&' is used as the column separator and '\\' indicates the end of each line. Note that you don't need this at the end of the last line.

Going further

This help section only scratches the very surface of the possibilities of LaTeX. For more information, here are some useful guides:
  • Latex: A Document Preparation System : User's Guide and Reference Manual, Leslie Lamport, Addison-Wesley, 1994
  • The TeXBook, Donald Knuth, Addison-Wesley, 1984
  • The Not So Short Introduction to LaTeX: An excellent short primer for LaTeX

If you are interested in using LaTeX away from My.SUPA for creating documents, try some of the following resources:

  • The TeX Users Group: A central respository of TeX information, installations and packages
  • MiKTeX: A good LaTeX installation for Windows
  • MacTeX: A comprehensive LaTeX installation for Mac OS X
  • LyX: A LaTeX editor for Windows, Mac OS X and Linux which resembles document processors such as Microsoft Word.
LaTeX is used very widely for writing theses and scientific papers, so you will almost certainly find lots of LaTeX expertise in your local group as well.

I

infinity

$$\infty$$  gives \infty

integral

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for integral symbol:

$$\bigint_{0}^{\infty}$$   gives  

\bigint_{0}^{\infty}

and

$$\int_{0}^{\infty}$$   gives 

\int_{0}^{\infty}

  • Use font size commands for a nicer picture:

$$\LARGE\bigint_{\small0}^{\small\infty}$$   gives  

\LARGE\bigint_{\small0}^{\small\infty}

and

$$\large\int_{\small0}^{\small\infty}$$   gives 

\large\int_{\small0}^{\small\infty}

iota (lower case greek letter)

$$\iota$$ gives \iota

K

kappa

$$\kappa$$ gives \kappa

L

Lagrangian

The Lagrangian,  \mathcal{L}

$$ \mathcal{L} $$

lambda (lower case greek letter)

$$\lambda$$ gives \lambda

Lambda (upper case greek letter)

$$\Lambda$$ gives \Lambda

Learning Formula

\frac{success}{problem}=~\unitlength{.6}~\picture(100){~~(50,50){\circle(99)}~ ~(20,55;50,0;2){+1$\hat\bullet}~~(50,40){\bullet}~~(50,35){\circle(50,25;34)}~ ~(50,35){\circle(50,45;34)}}

left only brace

  • Syntax: \left{...\right.  (note the dot at the end!)
  • Ex.: $$f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.$$ gives

f(x)=\left{{x^2, \rm~if x>-1\atop~0, \rm~else}\right.

(\rm~something switches to roman style)

less than

$$<$$   gives

less than or equal

$$x\le~y$$ or $$x\leq~y$$ gives

x\le~y

LyX

LyX is a LaTeX editor available for Windows, Linux and Mac OS X. Unlike other LaTeX packages, LyX looks similar to a word processor such as Microsoft Word. For more information, please visit the website at: http://www.lyx.org

M

math spaces

List of predefined spaces:

Math Spaces
CommandExampleResult
\, (smallest predefined)$$a\,b$$a\,b
\:  (second smallest predefined)$$a\:b$$a\:b
\;  (third smallest predefined)$$a\;b$$a\;b
\/  (avoiding ligatures)$$V\/A$$ instead of $$VA$$V\/A instead of VA
\quad  (space of current character set size)$$a\quad~b$$a\quad~b
\qquad  (double space of current character set size)$$a\qquad~b$$a\qquad~b
\_ (where _ is blank!)

$$a\ b$$

(whereas $$a\b$$ is not a valid filter expression since the blank space is missing; it is recommended to use the tilde ~ instead of the simple whitespace)

a\ b

\hspace{n} ,where n positive integer (= n Pixels)

$$a~\hspace{30}~b$$

$$a~\hspace{15}~b$$

$$a~\hspace{2}~b$$

$$a~\hspace{1}~b$$

a~\hspace{30}~b

a~\hspace{15}~b

a~\hspace{2}~b

a~\hspace{1}~b

\unitlength{m}\hspace{n}, changes the default unit length (m=1px) to be applied

$$a~\hspace{2}~b\unitlength{10}~\hspace{2}~c$$

(second space is 10x2=20px)

a~\hspace{2}~b\unitlength{10}~\hspace{2}~c

Note: Simple blank spaces and tildes (~) are ignored by the TeX filter and don't produce any space. You must use one of the defined math spaces to get a visible (extra) space.

mathematics expression

  • A valid expression inside the $'s is rendered as mathematics in an inserted gif image.
  • Ex.: $$x=y^2$$ creates 

x=y^2

matrix

  • An (m,n)-matrix is considered as an array of m*n elements, where the elements of a column are separated by "&" and the rows by "\\".
  • Syntax for an (m,n)-matrix:
    \begin{array}{colformat}a11&...&a1n\\a21&...&a2n\\... \\am1&...&amn \end{array}

    where
    colformat defines the format of each of the n columns: l for left, r for right and c for center (hence {ccccc} defines for a (m,5)-matrix in which all columns are centered)

  • Ex.: $$\left(\begin{array}{lcr}a_{\tiny1}+d & a_{\tiny2}+d & a_{\tiny3}+d \\ b_{\tiny1}& b_{\tiny2}& b_{\tiny3} \\ c_{\tiny1} & c_{\tiny2} & c_{\tiny3} \end{array}\right)$$ gives

\left(\begin{array}{lcr}a_{\tiny1}+d & a_{\tiny2}+d & a_{\tiny3}+d \\ b_{\tiny1}& b_{\tiny2}& b_{\tiny3} \\ c_{\tiny1} & c_{\tiny2} & c_{\tiny3} \end{array}\right)

Note in the example above that "lcr" has the effect that column 1 is left aligned, column 2 centered and colums 3 right aligned.

minus plus

$$\mp~a$$ gives \mp~a

mu (lower case greek letter)

$$\mu$$ gives \mu

multiplication (with cdot)

$$a\cdot~b$$ gives a\cdot~b

N

not equal

$$x\neq~y$$ gives

x\neq~y

note: \neg produces the logical negation, i.e. $$\neg~A$$ gives

\neg~A

nu (lower case greek letter)

$$\nu$$ gives \nu

O

omega (lower case greek letter)

$$\omega$$ gives \omega

Omega (upper case greek letter)

$$\Omega$$ gives \Omega

omikron (lower case greek letter)

$$o$$ gives o

(note this exceptional syntax!)

P

parentheses

  • Syntax: \left(...\right) or ...
  • Ex.: $$2a\left(b+c\right)$$ gives

2a\left(b+c\right)

phi (lower case greek letter)

$$\phi$$ gives \phi

Phi (upper case greek letter)

$$\Phi$$ gives \Phi

pi (lower case greek letter)

$$\pi$$ gives \pi

Pi (upper case greek letter)

$$\Pi$$ gives \Pi

plus minus

$$a\pm~b$$ gives a\pm~b

product

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for product symbol:

$$\bigprod_{i=k}^{n}$$   gives  

\bigprod_{i=k}^{n}

and

$$\prod_{i=k}^{n}$$   gives 

\prod_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigprod_{\tiny{i=k}}^{\tiny{n}}$$   gives  

\LARGE\bigprod_{\tiny{i=k}}^{\tiny{n}} 

and

$$\large\prod_{\small{i=k}}^{\small{n}}$$   gives 

\large\prod_{\small{i=k}}^{\small{n}}

psi (lower case greek letter)

$$\psi$$ gives \psi

Psi (upper case greek letter)

$$\Psi$$ gives \Psi

R

Resonant S-Channel

Resonant s-channel contribution from Drawing Feynman Diagrams with LaTeX and METAFONT. Part 1
\begin{fmffile}{schannel}
\begin{fmfgraph*}(100,160)
\fmfpen{thick}
\fmfleftn{i}{2}\fmfrightn{o}{4}
\fmflabel{$e_-$}{i1}\fmflabel{$e_+$}{i2}
\fmflabel{$\noexpand\bar c$}{o1}
\fmflabel{$\nu_{\mu}$}{o2}
\fmflabel{$\mu_+$}{o3}
\fmflabel{$s$}{o4}
\fmf{boson,label=$\gamma,,Z$}{v1,v2}
\fmf{fermion}{i1,v1,i2}
\fmf{fermion}{o1,v2,v3,o4}
\fmffreeze \fmf{boson}{v3,v4}\fmf{fermion}{o3,v4,o2}
\fmfdotn{v}{4}
\end{fmfgraph*}
\end{fmffile}
 \begin{fmffile}{schanneltwo} \begin{fmfgraph*}(100,60) \fmfpen{thick} \fmfleftn{i}{2}\fmfrightn{o}{4} \fmflabel{$e_-$}{i1}\fmflabel{$e_+$}{i2} \fmflabel{$\noexpand\bar c$}{o1} \fmflabel{$\nu_{\mu}$}{o2} \fmflabel{$\mu_+$}{o3} \fmflabel{$s$}{o4} \fmfpen{thick} \fmf{boson,label=$\gamma,,Z$}{v1,v2} \fmf{fermion}{i1,v1,i2} \fmf{fermion}{o1,v2,v3,o4} \fmffreeze \fmf{boson}{v3,v4}\fmf{fermion}{o3,v4,o2} \fmfdotn{v}{4} \end{fmfgraph*} \end{fmffile}

rho (lower case greek letter)

$$\rho$$ gives \rho

right only brace

  • Syntax: \left.{...\right}  (note the dot!)
  • Ex.: $$\left.{{\rm~term1\atop\rm~term2}\right}=y$$ gives

\left.{{\rm~term1\atop\rm~term2}\right}=y

(\rm~something switches to roman style)

root

  • Syntax: \sqrt[n]{arg} or simply  \sqrt{arg} for \sqrt[2]{arg}
  • Ex.: $$\sqrt[3]{8}$$ gives

\sqrt[3]{8}

  • Ex.: $$\sqrt{-1}$$ gives

\sqrt{-1}

  • Nesting of roots (and combining with fractions, ...etc.) are possible.
  • Ex.: $$\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}$$ gives

\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}

  • Ex.: $$\sqrt[3]{-q+\sqrt{q^2+p^3}}$$ gives

\sqrt[3]{-q+\sqrt{q^2+p^3}}

S

sigma (lower case greek letter)

$$\sigma$$ gives \sigma

Sigma (upper case greek letter)

$$\Sigma$$ gives \Sigma

smiley

$$~\unitlength{.6}~\picture(100){~~(50,50){\circle(99)}~ ~(20,55;50,0;2){+1$\hat\bullet}~~(50,40){\bullet}~~(50,35){\circle(50,25;34)}~ ~(50,35){\circle(50,45;34)}}$$  is ~\unitlength{.6}~\picture(100){~~(50,50){\circle(99)}~ ~(20,55;50,0;2){+1$\hat\bullet}~~(50,40){\bullet}~~(50,35){\circle(50,25;34)}~ ~(50,35){\circle(50,45;34)}}

square bracket

  • Synatx: \left[...\right]
  • Ex.: $$\left[a,b\right]$$ gives \left[a,b\right]

square root

  • $$\sqrt{a}$$ or $$\sqrt~a$$ gives \sqrt~a
  • Use braces for terms with more than one character: $$\sqrt{x+y}$$ gives

\sqrt{x+y}

subscript

  • The command character "_" triggers subscription of the following expression(s).
  • For more than one subscripted character put them in braces {...}.
  • Use font sizing commands for appropriate sizing.
  • Ex.:$$x_1$$ gives

x_1

  • Ex.:$$a_{m+2n}$$ gives

a_{m+2n}

  • Ex. (with specific sizing):  $$x_{\small1}=a_{\small{m+2n}}$$ gives

x_{\small1}=a_{\small{m+2n}}

  • Combine subscripting with superscripting (command character "^").
    Syntax: Expr_{subExpr}^{supExpr}.
  • Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$$ gives

A_{\small{i,j,k}}^{\small{-n+2}}

sum (summation)

  • General syntax for symbols with a kind of lower and upper limits:

\symbolname_{lowerexpression}^{upperexpression}

  • In general, there are two ways how these lower and upper expressions can be placed: centered below and above the symbol or in a subscript / superscript manner. In the first case the symbol name is preceded by the word "big", in the second there is no prefix.
  • Syntax for summation symbol:

$$\bigsum_{i=k}^{n}$$   gives  

\bigsum_{i=k}^{n}

and

$$\sum_{i=k}^{n}$$   gives 

\sum_{i=k}^{n}

  • Use font size commands for a nicer picture:

$$\LARGE\bigsum_{\small{i=1}}^{\small{n}}$$   gives  

\LARGE\bigsum_{\small{i=1}}^{\small{n}}

and

$$\large\sum_{\small{i=1}}^{\small{n}}$$   gives 

\large\sum_{\small{i=1}}^{\small{n}}

superscript

  • The command character "^" triggers superscription of the following expression(s).
  • For more than one superscripted character put them in braces {...}.
  • Use font sizing commands for appropriate sizing.
  • Ex.: $$x^2$$ gives

x^2

  • Ex.: $$a^{m+2n}$$ gives

a^{m+2n}

  • Ex. (with specific sizing): $$x^{\small2}=a^{\small{m+2n}}$$ gives

x^{\small2}=a^{\small{m+2n}}

  • Combine superscripting with subscripting (command character "_").
    Syntax: Expr_{subExpr}^{supExpr}.
  • Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$$ gives

A_{\small{i,j,k}}^{\small{-n+2}}

T

tau (lower case greek letter)

$$\tau$$ gives \tau

TeX

TeX  notation allows for the expression of ASCII characters to generate formatted graphics output

theta (lower case greek letter)

$$\theta$$ gives \theta

Theta (upper case greek letter)

$$\Theta$$ gives \Theta

times

$$a\times~b$$ gives a\times~b

Tree Diagrams using FeynMP

Tree Diagrams from Drawing Feynman Diagrams with LaTeX and METAFONT. Part 1
$ $
\unitlength = 1mm
\begin{fmffile}{tree}
\begin{fmfgraph*}(100,60)
 \fmfleftn{i}{2} \fmfrightn{o}{4}
 \fmflabel{$e_-$}{i1}\fmflabel{$e_+$}{i2}
 \fmflabel{$\mu_+$}{o1}
 \fmflabel{$\nu_{\mu}$}{o2}
 \fmflabel{$s$}{o3}
 \fmflabel{$\noexpand\bar c$}{o4}
 \fmf{fermion}{i1,v1,i2}
 \fmf{boson,label=$\gamma,,Z$}{v1,v2}
 \fmf{boson}{v3,v2,v4}
 \fmf{fermion}{o1,v3,o2}
 \fmf{fermion}{o4,v4,o3}
 \fmfdot{v1,v3,v4}\fmfblob{.12w}{v2}
\end{fmfgraph*}
\end{fmffile}
$ $
 \unitlength = 1mm \begin{fmffile}{tree} \begin{fmfgraph*}(100,60) \fmfleftn{i}{2} \fmfrightn{o}{4} \fmflabel{$e_-$}{i1}\fmflabel{$e_+$}{i2} \fmflabel{$\mu_+$}{o1} \fmflabel{$\nu_{\mu}$}{o2} \fmflabel{$s$}{o3} \fmflabel{$\noexpand\bar c$}{o4} \fmf{fermion}{i1,v1,i2} \fmf{boson,label=$\gamma,,Z$}{v1,v2} \fmf{boson}{v3,v2,v4} \fmf{fermion}{o1,v3,o2} \fmf{fermion}{o4,v4,o3} \fmfdot{v1,v3,v4}\fmfblob{.12w}{v2} \end{fmfgraph*} \end{fmffile}

triangle

$$\triangle~abc$$ gives \triangle~abc

triggering the TeX filter

  • Two double $'s embracing a valid math expression trigger the filter to generate and insert the formula gif.
  • Ex.:  $$a^2$$ produces a^2

U

upsilon (lower case greek letter)

$$\upsilon$$ gives \upsilon

Upsilon (upper case greek letter)

$$\Upsilon$$ gives \Upsilon

Using LaTeX in My.SUPA

My.SUPA has been setup to allow maths to be written quickly using LaTeX notation. This can be included anywhere you see a text box in your course, in news or social forums, wikis or other course areas.

The format for entering LaTeX in My.SUPA is to wrap the code between two double dollar signs

eg. $$$a^2=b^2+c+d^2$$$ is automatically shown to others as a graphic element which appears as a^2=b^2+c+d^2.

See the following categories for more detailed information and examples:

01 Getting Started

02 Arithmetic expressions, sub-/superscripts, roots
03 Font Styles
04 Delimiters (parentheses, braces,...)
05 Spaces

06 Symbols
07 Relations
09 Structures


The formula is stored as LaTeX internally, and copes with most standard formulae. The underlying code can be edited repeatedly in text form. Others using the My.SUPA course will see the graphic version, and on hovering a mouse over the graphic may be the LaTeX code as alternate text popup. My.SUPA uses a full installation of teTeX package of LaTeX 2e (tetex-latex-2.0.2-22.0.1.EL4.10).

For help with this and setting up forums, wikis or course pages to use this, contact David, Karon or Sean

V

varepsilon (special lower case greek letter)

$$\varepsilon$$ gives \varepsilon

variables

  • Variables in formulas are rendered in italic roman font face, which is a widely used convention.
  • Following this convention, constants are shown as non-italic.
  • Exp.: $$f(x)=3a+x$$ gives

f(x)=3a+x

varphi (special lower case greek letter)

$$\varphi$$ gives \varphi

varpi (special lower case greek letter)

$$\varpi$$ gives \varpi

varrho (special lower case greek letter)

$$\varrho$$ gives \varrho

varsigma (special lower greek letter)

$$\varsigma$$ gives \varsigma

vartheta (special lower case greek letter)

$$\vartheta$$ gives \vartheta

vertical line (absolute value, determinant, ...etc. symbol)

  • Syntax: \left|...\right|
  • Ex.: $$\left|b-a\right|$$ gives \left|b-a\right|
  • Ex.: $${\rm~det}\left|\begin{array}{cc}a&b\\c&d \end{array}\right|$$ gives  

{\rm~det}\left|\begin{array}{cc}a&b\\c&d \end{array}\right| 

 
("\rm~something" renders "something" in roman style)

X

xi (lower case greek letter)

$$\xi$$ gives \xi

Xi (upper case greek letter)

$$\Xi$$ gives \Xi

Z

zeta (lower case greek letter)

$$\zeta$$ gives \zeta

Page:  1  2  3  4  5  6  7  8  9  10  ...  12  (Next)
  ALL