Introduction to nuclear structure: an up-to-date perspective

John L. Wood

School of Physics

Georgia Institute of Technology

References:

"Fundamentals of Nuclear Models: Foundational Models"

--David J. Rowe and JLW, World Scientific, 2010 [Rowe & Wood—R&W]

"Shape Coexistence in Atomic Nuclei"

--Kris Heyde and JLW, Reviews of Modern Physics Vol. 83 1467 2011

[Heyde & Wood]

Challenges to the student^{*} of nuclear structure

- Nucleus--quantum mechanical many-body problem not a branch of pedagogical quantum mechanics needs approximations or models (Pauli exclusion principle severely modifies bare nucleon-nucleon interaction)
- Nuclear structure study as a many-body problem: necessitates acquisition of large, systematic data sets
 we possess extraordinary control over the many-body aspects of the nucleus and the processes that can be effected in the laboratory

Philosophical perspective

- We are about to enter a restaurant that serves (brain) food.
- The instructor is the chef.
- But the chef does not cook and serve you; rather, the chef shows you how you will cook your meal.
- It is a (very) long time since the chef has been served a ready to eat meal.
- The chef has favorite recipes (they may not be yours).
- The chef still occasionally suffers from food poisoning (you will too).
- Sometimes what you cook will be delicious; sometimes it will be difficult to chew, and sometimes utterly indigestible.
- BON APPÉTIT!
- P.S. This is reality (television).

Acknowledgement: I would like to thank Marcus Scheck for challenging me to think more deeply about what I do when I present myself as a teacher.

The responsibility of a teacher is that their students do not (completely) starve.

Chart of the nuclides

Welcome to the many-body problem (restaurant)!

LECTURE 1

Nuclear systematics

Key types of data Some basic features

Nuclear binding energy per nucleon

B/A--near constant value: nuclei are liquid-drop like

One-neutron separation energies

Two-neutron separation energies

Differences in binding energy reveal shell structure

Root-mean-square charge radii of nuclei

near linear slope: nuclei are liquid-drop like

$$R \approx 1.2 \ A^{1/3} \ fm$$

the size of the nucleus fixes *its scale of quantization*

Elastic scattering of electrons: high precision probe of nuclear size (¹⁹⁷Au)

Elastic scattering of electrons reveals, via the fitting of model charge-density distributions, that nuclei do not have sharp surfaces. $E_e = 153$ MeV.

$${}^{*}_{\rho}(r) = \rho_0 \left\{ 1 + \exp\left(\frac{r - R_B}{a}\right) \right\}^{-1}$$

 λ (nm)= 1240/E(eV), for E >> m_ec² = 0.5 MeV

 $E_{e} = 153 \text{ MeV} \rightarrow \lambda = 8 \text{ fm}$

Nuclei do not have sharp surfaces: their surfaces are diffuse

Figure: adaptation from B. Frois and C. Papanicolas, Ann. Rev. Nucl. Sci. **37** 133 1987

From elastic electron scattering

Differences in mean-square charge radii reveal shell structure

Atomic hyperfine spectroscopy leads to highprecision isotope shift data: Y (Z = 39) isotopes

B. Cheal et al., PL B645, 133 (2007)

Atomic hyperfine splitting due to magnetic dipole and electric quadrupole moments of the nucleus

$$a = g_I \mu_N B_J / \sqrt{J \left(J + 1\right)}$$

$$\mathsf{D} = (\mathsf{e}\mathsf{Q})(\partial^2 V / \partial z^2)$$

I – nuclear spin J – electron spin F – atomic spin

Magnetic dipole Electric quadrupole

K. Heyde & JLW, Phys. Scr. **91** 083008 2016 J.A.S. Smith, Chem. Soc. Rev. **15** 225 1986 EARLY HISTORY: Schuler and Schmidt 1935 Casimir 1935

Electric quadrupole moments indicate that many nuclei are non-spherical: odd Z and odd N

Multi-step Coulomb Excitation

Multiple-step Coulomb excitation (multi-Coulex) populates excited

collective states in nuclei.

An incident nucleus is scattered by the Coulomb interaction with a target nucleus.

A close ("safe") approach results in multiple Coulomb interactions only (no complication from strong interactions).

Level energies and transition strengths are deduced through γ ray spectroscopy.

Level lifetimes, quadrupole moments and transition matrix elements are deduced by a leastsquares fit to γ -ray yields.

Gammasphere: 110 Ge γ -ray detectors.

particle detector.

Figure: W.D. Kulp, Ga Tech

Multi-step Coulomb excitation: Doppler-corrected response of a beam of ¹⁵²Sm on a ²⁰⁸Pb target

Figure: W.D. Kulp, Ga Tech

Rigid rotor model energy ratios

 $R_4 = E(4_1^+) / E(2_1^+) = E(I) = A I(I + 1)$

A ~ (moment of inertia)⁻¹

Energies of first-excited 2⁺ states in nuclei

Nuclear rotation in the laboratory frame nuclei look "fuzzy"

I or J are used interchangeably

Axially symmetric rigid rotor model: quantum numbers

Quadrupole moments of 2⁺, K = 0 states: most are prolate, but appear to oblate

Uncertainties? Lack of data?

Electric quadrupole transition probabilities B(E2; $2_1^+ \rightarrow 0_1^+$): Deformation

B(E2) values

B(E2) = 9527 /
$$E_{\gamma}^{5} T_{1/2} A^{4/3}$$

```
E_{\gamma} in MeV

T_{1/2} in ps<sup>*</sup>

B(E2) in Weisskopf units (W.u.)

B(E2) W.u. = 5.940 x 10<sup>-6</sup> A<sup>4/3</sup> e<sup>2</sup> b<sup>2</sup>
```

*There are multiple processes per decay path, e.g., γ decay and internal conversion; sometimes more than one decay path: $T_{1/2} = T_{1/2}$ (measured) / branching fraction.

e—unit of electrical charge; b = barns, $1b = 10^{-24} cm^2$

Figure 2.4. Plot of B(E2; $2_1^+ \rightarrow 0_1^+$) in W.u. versus E(2_1^+) in keV for all available data (for doubly even nuclei). This illustrates the inverse relationship between the two quantities.

Nuclear Data

- Nuclear Data Sheets
- Evaluated Nuclear Structure Data Files (ENSDF) nndc.bnl.gov
- Experimental Unevaluated Nuclear Data List (XUNDL) nndc.bnl.gov
- Masses--Atomic Mass Evaluation (AME) AME2016 Chin. Phys. C41 No. 3 030001 et seq. (2017)
- Radii

At. Data Nucl. Data Tables 99 69 (2013)

• Moments

At. Data Nucl. Data Tables **90** 75 (2005) [incomplete]; *ibid*. **111/112** 1 (2016) [incomplete]

• B(E2) data

At. Data Nucl. Data Tables **78** 1 (2001) At. Data Nucl. Data Tables **107** 1 (2016) [some errors; nonstandard eval.]

LECTURE 1: DISCUSSION

Some questions

- In the first atomic bomb detonation, how many grams of mass were converted to energy?
- How many kilograms of mass is the Sun "burning" per second?
- Why do the S_{2n} vs. A slopes for the three shell regions shown for the Ca isotopes exhibit a "steep"-"shallow"-"steep" pattern? [DIFFICULT—clue, look at a shell model diagram. Also, think of nuclear size (confining potential)]
- Why do light nuclei (¹⁶O, ⁴⁰Ca) not quite follow the R ~ 1.2 A^{1/3} fm relationship?
- What is happening with $\delta < r^2 >$ for the Rb, Sr and Y isotopes at N = 60?
- Why does the atomic hyperfine splitting due to the electric quadrupole moment of the nucleus depend on the second derivative of the electric field?

Some nuclei are too short-lived to be isolated in the laboratory: the drip lines have been reached

Figure a) from M. Langevin et al., PL B150, 71 (1985).

Figure b) from M.G. Saint-Laurent et al., PRL 59, 33 (1987).

The challenge to the nuclear structure physicist is to study the "fine and superfine" structure of the B/A curve

Relationship of separation energies to nuclear masses

Ground states of all even-even nuclei:

they have spin 0 because the pairing force favors maximum overlap of the nucleon wave functions;

parity is, by convention, positive for these states.

Figure 6.21: One-proton separation energies, $S_{\rm p}$, for the N=82 isotones. All lines are drawn to guide the eye. All uncertainties but one are smaller than the circles around the data points. Note that the extreme right-hand data point (for 153 Lu) corresponds to this nucleus being unbound with respect to one-proton emission. (Data taken from Audi G., Wapstra A.H. and Thibault C. (2003), *Nucl. Phys.* A729, 337.)

The anatomy of pairing in finite many-body quantum systems: effect on separation energies

In molecules, quantum degrees of freedom have separate spectral responses

The infrared absorption spectrum of HCl reveals molecular vibrations and rotations.

Quantum mechanics of E2 transitions and moments for the rigid axially symmetric rotor

Electromagnetic transitions and moments for the rotor
E2 transitions: $B(E2) = 0.056579 e^{2}b^{2}$, $1 W.u. = 5.940 \times 10^{-6} A^{4/3} e^{2}b^{2}$ $\overline{(E_{x})^{5} T_{1/2}^{1/3}}$ (MOT (b) Weisskohf whit
$B(E2) = \frac{\left \langle f \mathcal{M}(E2) i \rangle \right ^{2}}{2I_{i} + 1}, B(E2; o^{\dagger}_{i} \rightarrow 2t) = 5B(E2; 2t \rightarrow 0)$ $B(E2; d_{i}; I_{i}; V_{i} \rightarrow cf I_{i} V_{i}) = \frac{5}{\sqrt{2\pi}} \langle I_{i} V_{i}; 2, V_{i} - V_{i} I_{i} V_{i} \rangle \langle V_{i} V_{i} d_{i} V_{i} \rangle$
For $K = 0$ ground-state bands of doubly-even nuclei: $B(E2; I \rightarrow I - 2) = \frac{15}{32T} G_0^2 \frac{I(I-1)}{(2I-1)(2I+1)}, B(E2; 2 \rightarrow 0) = \frac{G_0^2}{16T}$
Electric quadrupole moments: $Q_{NK}(I) = \langle AKIM=I \hat{Q}_0 AKIM=I \rangle$ $Q_{V}(I) = Q_0 [3K^2 - I(I+I)]$
For $K=0$ gsb's $e-e$: $Q(I) = -\frac{I}{2I+3}Q_{0}$
$Q(2^{\dagger}) = -\frac{2}{7}\sqrt{16\pi} \cdot \mathcal{B}(E_2; 2^{\dagger}_1 \rightarrow 0^{\dagger}_1)$