LECTURE 2

Classifying nuclear structures:
mostly even mass

Key structural types
Elementary quantum mechanical descriptions



KEY OBSERVATIONS

Given a collection of nucleons, we possess no a priori way to arrive at the
structure of nuclei without guidance from data.

Given a collection of data, we possess no a priori way to arrive at the
structure of nuclei without guidance from quantum mechanical models.
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Energies of first-excited 2* states in nuclei

E(2,*) ~ (mom. of inertia)*?
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Systematic of E(2,*) for N 250, Z < 50
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High energies for 2,* states may be misleading

N=50: g,,, seniority structure, v=0, 2 ’

J =% orbitals can only contribute
to v = 0 states, at low energy

90Zr E(2,*) is high: suggests a closed
subshell, but is due to depression

of the ground-state energy
0* 1761
A
0* P12
0" 8o/2”
 /
0" 0

2
2

8v131ns3589  87190ns2760 8" 71ps 2644 8% 2.1us2531 87 480ns 2428
6t 3a48 6t 2612 6t o408 6 2424 o+ e
ot 2520
. 4 2099 4t 2082
+ 4 21 -
& oy At o083 & 2187
DAl 1395
. il 1415 .--—
o+ 1510 -2 1431
7 21867
ot 1761
\
\ of 0
! o* 0
ot 0
\0+ 0 -
Figure from Heyde & Wood
ot 0/
90 92 94 96 98
Z 1Mos, 44885 465950 4550

4050




Figure from Heyde & Wood
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E(2,*) systematic: a simple view of

nuclear structure
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Has the shell structure @ N=20
“collapsed” or “melted” for 2 < 12?

And @ N=28 for Z < 14?

Energies are in keV



Intruder states or
the “island of inversion” @ N=20

E(MeV) 0,* state identification:
32Mg--K. Wimmer et al., PRL 105 252501 (2010) & 7288
| 34Gj--F. Rotaru et al., PRL 109 092503 (2012) S———
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Electric quadrupole transition probabilities

B(E2; 2,* -> 0,*): Deformation

B(E2; 2+ > 0f) W.u.
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Large B(E2) values:

open-shell nuclei are deformed
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B(E2) values
B(E2) =9527 /E5 T,, A%3

Eyin MeV
Ty5inps’
B(E2) in Weisskopf units (W.u.)
B(E2) W.u. =5.940 x 10° A%3 e2 b2

"There are multiple processes per decay path, e.g., v decay and internal conversion;
sometimes more than one decay path: T,,, =T, , (measured) / branching fraction.

e—unit of electrical charge; b = barns, 1b = 1024 cm?



V.F. Weisskopf (units): Phys. Rev. 83 1073 (1951)

LETTERS TO

where K is the low frequency dielectric constant, Ky is the optical
constant, p the density, and x the compressibility. In Table I are
listed the values of 8 InK/dp calculated from (4) and (1) next to
the experimental values of @ InK/3p. The calculated values of
3 InK/dp differ from those of Rao by the term a(K — Ko)/K, which
arises from the difference between (1a) and (2a).

Equation (4) is derived assuming that the inner field polarizing
the dielectric is independent of pressure. Since the values of
—a InK/3p obtained from (4) do not account for all the change in
the dielectric constant, it seems consistent to expect that the inner
field is not but does d with i
This conclusion agrees with the one reached in my ongmal paper
using the theories of Hojendahl and Mott and Littleton.

D. A. A. S. Narayana Rao, Phys. Rev. 82, 118 (1951).
ZS Maybum Phys. Rev. 79, 375 (1950).
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Radiative Transition Probabilities in Nuclei

V. F. WEISSKOPF

Physics Department, Massachusetts Insmute of Technology,
mbridge, Massachuse
(Received July 20, 1951)

ONSIDER a transition from nuclear state a to nuclear state
b with emission of a quantum of multipole radiation of
angular momentum / (2%-pole) and z component m. The transition
probability per unit time is given by!
8r(l+1) w1
LEHHUE &
where k=2mv/c is the wave number of the emitted radiation, and
the quantities 4, A” are the multipole matrix elements caused by
the electric currents and by the magnetization (spins), respectively.
We find for electric radiation

T, m)= A0, m)+4'C,m)|?, )

zZ
AW =0 m=e2 [t Vin®(01 8 e 0, @
eh A
A, m)=Q'(, m)_~[+12MﬂkZl

X | rt YVim*(0r, 1) div(es*reXOxpa) dr, (3)

where ¢, and ¢ are the wave functions of the nuclear states, 3 is
the mass of each nucleon, ri=(rz, 01, ¢) is the position vector of
the kth nucleon, @y is its Pauli spin vector, and g is its magnetic
moment in nuclear magnetons. The sum in (2) extends over the
protons, the sum in (3) over both protons and neutrons. These
expressions are approximations valid for kRK1, where R'is the
nuclear radius.

The corresponding expressions for magnetic multipole radiation
are

Z
Al m) =M, m)= —H_Ll %ﬂ Z

76t Vim*(Bk, ¢x) div(ep*Liea) dr, (4)

e A
A, my=M"(, »t):r—mz Mk
1

75t Vim*(Ok, ¢1) div(es*Orea) dr, (5)

where Liy=—irsX V4 is the orbital angular momentum operator
(in units of %) for the kth nucleon.

We can estimate these matrix elements by the following ex-
ceedingly crude method. We assume that the radiation is caused
by a transition of one single proton which moves independently
within the nucleus, its wave function being given by u(r) ¥ 1n(8, ¢).
In addition we also assume that the final state of the proton is an
S state.? We then obtain

QU m~Le/(4m)*][3/(+3) IR (6)

where the integral f'r'us(r)us(r)r*dr over the radial parts of the
proton wave functions was set approximately equal to 3R*/(I4-3).
The other matrix elements are estimated by replacing div by R
We get the rough order-of-magnitude guess

M, m)~Le/(4m)¥][3/(+3)]h/ MR, (W)
M@, m)~Le/(4m)¥1[3/(1+3) Jup[h/McIR™, ®)
where pp is the magnetic moment of the proton (=2.78). Q'(, m)
can be neglected compared to Q(/, m). We therefore get a ratio of
roughly
(1+up?)(h/ McR)*~10(h/ McR)*

between the transition probability of a magnetic multipole and an
electric one of the same order. This ratio is energy-independent in
contrast to widespread belief.

Inserting these estimates into (1) we get for the transition
probability of an electric 2!-pole

s —ﬁ%%%j‘:(ws) (197 Mev)“H

X (R in 10718 cm)?! 10% sec™  (9)
and for a magnetic 2!-pole

Tul®) 19041 (3 )( )’“"

MU= IE@+ 1) E+3/ \197 Mev.

X (R in 1071 cm)?2 10% sec™.  (10)

The assumptions made in deriving these estimates are extremely
crude and they should be applied to actual transitions with the
greatest reservations. They are based upon an extreme application
of the independent-particle model of the nucleus and it was
assumed that a proton is responsible for the transition. On the
basis of our assumptions the electric multipole radiation with />1
should be much weaker for transitions in which a single neutron
changes its quantum state. No such differentiation is apparent in
the data.

In spite of these difficulties it may be possible that the order of
magnitude of the actual transition probabilities is correctly de-
scribed by these formulas. We have published these exceedingly
crude estimates only because of the rather unexpected agreement
with the experimental material which was pointed out to us by
many workers in this field.

The author wishes to express his appreciation especially to Dr.
M. Goldhaber and Dr. J. M. Blatt for their great help in discussing
the experimental material and in improving the theoretical
reasoning.

1 We use the notation (2041)11=1-3+5--+(2I+1).
2 This latter assumption can be removed; the corrections consist in unim-
portant numerical factors.

Nuclear Magnetic Resonance in Metals:
Temperature Effects for Na2?

H. S. Gutowsky

Noyes Chemical Laboratory, Department of Clum;shy University of Illinois,
Urbana, Iilinoi:

(Received July 2, 1951)

NIGHT reported! that nuclear magnetic resonance fre-
quencies are higher in metals than in chemical compounds.
It has been proposed? that such frequency shifts are primarily the
result of the contribution of conduction electrons to the magnetic
field at the nuclei in the metal. This note gives an account of some
related preliminary results including temperature and chemical
effects, and also detailed line shape studies. Our experiments have
been' at fixed frequency using equipment and procedures outlined
previously.% ¢
The effect of temperature on the Na® magnetic resonance shift
in the metal, relative to a sodium chloride solution, is given in

The assumptions made in deriving these
estimates are extremely crude and they
should be applied to actual transitions
with the greatest reservations.
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Figure: J.M. Allmond, Oak Ridge Nat. Lab.
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Figure 2.4. Plot of B(E2; 2,* = 0,%) in W.u. versus E(2,*) in keV for all available data
(for doubly even nuclei). This illustrates the inverse relationship between the two quantities.




Doubly closed shell nuclei
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Doubly closed shells: 48Ca, 132Sn, 208pb"

“See: A. Heusler et al., PR C 93 054321 (2016)

By, 10.1 W.u. Be, 0.29 B(E2) W.u. B(E3) W.u.
B,, 0.26 B,, 0.40
2p-2h |0* 4868
_ ‘ 6 i 4716
2_‘"=44-2(())g 4+ 44i6 >k+:|.4-6 states below 6200 keV
n2p-2h |07 7083 (3;) j?)ii 2+ A 4086
2 3832
5 3197
50 3 2615
3 >7 8.4
1.7 /
34
OtV v 0 0 v v 0 0* ¥ v 0

48Ca 1325n 208pb



Doubly closed shells, N = Z: 160, 4°Ca

Doubly closed shell nuclei with N = Z exhibit shape coexistence at (relatively)

low energy.

Shape coexistence appears to be universal, and it is essential to identify its

occurrence at low energy.
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Excited O* states at closed shells: Shape coexistence
in the double-closed shell nuclei °Ca and ~°Ni

Figure from K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)
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The Hoyle state (7.65 MeV state in *°C)

Sir Fred Hoyle (1915-2001)

Helium fusion in stars

F. Hoyle, Astrophysical J. Suppl.
Ser.1 121 1954
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Singly closed shell nuclei

Proton Number Z
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Shell-model states:
many-particle bookkeeping in spherical nuclei
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2792

2439

N = 82: proton single-quasiparticle* states

*quasiparticle = particle in a “modified environment” —
all of the other particles are paired (Cooper pairs)
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N=82 g,,+d;,-dominated seniority structure

3749

*seniority, » = no. unpaired particles
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B,, vs. B,, for singly closed-shell nuclei

N =82

134Te: see Stuchbery et al.,,

-- 13251 core polarization

Phys. Rev. C88 051304 (2013)
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B,, vs. B,, for singly closed-shell nuclei

enhancement due to mixing?
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E (MeV)

Deformed bands built on excited 0* states
at closed shells: tin isotopes

B(E2)s in W.u. [100 = rel. value]
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Evidence for mixing of 4," and 4," configurations

in 116Sn
Decay of 6,* state to 4," and 4,* states
61 with near equal intensities indicates that
the two underlying 4* configurations must
503 be strongly mixed.
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E2 transitions associated with shape coexistence in 1141205

| B(E2) W.u. Data from ENSDF
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B(E2; 0," & 2,*) vs. E(0,*) — E(2,*): shape coexistence and mixing

yields B(E2; 0,* 2,*) ~ o B2 (AQ)>
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Shape coexistence in the singly closed-shell
lead (Z = 82) isotopes

Figure: Heyde & Wood

’ Heavy arrows indicate EO+M1+E2 transitions
188ph: G.D. Dracoulis et al., PR C67 R 051301 2003
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LECTURE 2: DISCUSSION



Some questions

* If you plan a program of half-life measurements for 2,* states, which ones
would you choose to re-measure in the Z> 28, N < 82 region?

* With respect to 2°%Pb, what did Heusler et al. achieve?
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Values of B(E2; 2,* = 0,%) in Weisskopf units (W.u.) for nuclei in the region Z > 28, N <82.
The heavy black dots mark the singly closed-shell nuclei at Z = 28, 50 and N = 50, 82. Solid lines
connect isotopes and dashed lines connect isotones. Note the vertical compression above 100 W.u.
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Rowanwood Sect.2.6 Fig.2.6.3 v.7/24/16
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Seniority structures for the heavy N = 82 isotones. The structure of the higher-mass nuclei reflects the dominance
of the 1h,,,, orbital. The structure of 1*°Gd exhibits a strong “depression” of the ground state energy as a result of
the (3s,,,)%, v = 0 configuration mixing with the (1h,, ,)?, v = 0 configuration. A similar ground state depression
occurs in %’Tb for v = 1 configurations. The strength of the mixing of these configurations can be inferred to be

~ 1 MeV, by visual inspection. The states with J™ = 4%, 6% in >2Yb and >*Hf are by-passed in the decay of the 8* state
by way of lower-lying 5~ and 7- states. The 10* state is known to influence the decays in 1**Hf through the isomeric
nature of the decay, but the very low energy of the 10* = 8* transition was outside of the range of sensitivity of
the measurements made. There are candidate 6* states known in 146Gd, but an unambiguous assignment has not
been made. The 2d,, orbital also is influencing the low-energy structure of 146Gd. The energies are arbitrarily
normalized at spin 8 and 27/2.



Shape coexistence in the doubly closed-shell nucleus
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Energies of states are given in keV.
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States on the far left are spherical.

The beginnings of three deformed
bands, with K=0, 0, 2, are shown.

H. Morinaga, PR 101 254 1956




Shape coexistence at closed shells:

the N = 50, 82 isotones

80Ge" E(0,") = 639 keV, see:
A. Gottardo et al.,

PRL 116 182501 (2016)
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EO transitions associated with shape coexistence in 1141205

J. Kantele et al., ZP A289, 157 (1979)

T. Kibedi and R.H. Spear, ADNDT 89, 277 (2005) |

Mixing of close lying configurations with different mean-square charge radii produces EO strength |
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EO Transitions: shape coexistence and mixing

EO transition strengths are a measure of the
off-diagonal matrix elements of the
mean-square charge radius operator.

Mixing of configurations with different
mean-square charge radii produces
EO transition strength.
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Q values: http://bricc.anu.edu.au

T: partial lifetime for EO decay branch

J. Kantele et al. Z. Phys. A289 157 1979
and see
JLW et al. Nucl. Phys. A651 323 1999




The nature of the shape coexisting state in 16Sn
revealed by (3He,n) transfer reaction spectroscopy
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Two-state mixing



