LECTURE 2

Classifying nuclear structures: mostly even mass

Key structural types
Elementary quantum mechanical descriptions

KEY OBSERVATIONS

Given a collection of nucleons, we possess no a priori way to arrive at the structure of nuclei without guidance from data.

Given a collection of data, we possess no a priori way to arrive at the structure of nuclei without guidance from quantum mechanical models.

Energies of first-excited 2+ states in nuclei

$$
\mathrm{E}\left(2_{1}^{+}\right) \sim(\text { mom. of inertia) })^{-1}
$$

Systematic of $\mathrm{E}\left(2_{1}{ }^{+}\right)$for $\mathrm{N} \geq 50, \mathrm{Z} \leq 50$

High energies for $2_{1}{ }^{+}$states may be misleading

$\mathrm{E}\left(2_{1}{ }^{+}\right)$systematic: a simple view of nuclear structure

Figure from Heyde \& Wood

Cr	24			892	752	783	1434	835	1007	881	646
Ti	22		1556	1083	889	983	1554	1050	1495	1129	
Ca	20	2213	3904	1525	1157	1346	3832	1026	2563		
Ar	18	1970	2168	1461	1208	1158	1577	1037			
S	16	2127	3291	1292	904	890	1330	952			
Si	14	1941	3328	1399	1084	986	770				
Mg	12	1483	886	660	660			$\mathrm{E}\left(2_{1}^{+}\right)$			
Ne	10	1320	792	722		"					
		18	20	$22 \quad 24$		26	28	30	32	34	36

Has the shell structure @ N=20
"collapsed" or "melted" for $\mathrm{Z} \leq 12$?
And @ $N=28$ for $Z \leq 14$?

Energies are in keV

Intruder states or the "island of inversion" @ N=20

Electric quadrupole transition probabilities $\mathrm{B}\left(\mathrm{E} 2 ; 2_{1}{ }^{+}->\mathrm{O}_{1}{ }^{+}\right.$): Deformation

$B(E 2)$ values

$B(E 2)=9527 / E_{\gamma}{ }^{5} T_{1 / 2} A^{4 / 3}$

E_{γ} in MeV
$\mathrm{T}_{1 / 2}$ in ps^{*}
$B(E 2)$ in Weisskopf units (W.u.)

$$
B(E 2) \text { W.u. }=5.940 \times 10^{-6} \mathrm{~A}^{4 / 3} \mathrm{e}^{2} \mathrm{~b}^{2}
$$

*There are multiple processes per decay path, e.g., γ decay and internal conversion; sometimes more than one decay path: $T_{1 / 2}=T_{1 / 2}$ (measured) / branching fraction.
e-unit of electrical charge; $b=$ barns, $1 b=10^{-24} \mathrm{~cm}^{2}$

V.F. Weisskopf (units): Phys. Rev. 831073 (1951)

The assumptions made in deriving these estimates are extremely crude and they should be applied to actual transitions with the greatest reservations.

Figure 2.4

Figure 2.4. Plot of $\mathrm{B}\left(\mathrm{E} 2 ; 2_{1}{ }^{+} \rightarrow \mathrm{O}_{1}{ }^{+}\right.$) in W .u. versus $\mathrm{E}\left(2_{1}{ }^{+}\right)$in keV for all available data (for doubly even nuclei). This illustrates the inverse relationship between the two quantities.

Doubly closed shell nuclei

R\&W Fig. 1.2

Doubly closed shells: ${ }^{48} \mathrm{Ca},{ }^{132} \mathrm{Sn},{ }^{208} \mathrm{~Pb}{ }^{*}$

Doubly closed shells, $\mathrm{N}=\mathrm{Z}:{ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca}$

Doubly closed shell nuclei with $\mathrm{N}=\mathrm{Z}$ exhibit shape coexistence at (relatively) low energy.

Shape coexistence appears to be universal, and it is essential to identify its occurrence at low energy.

Excited 0^{+}states at closed shells: Shape coexistence in the double-closed shell nuclei ${ }^{40} \mathrm{Ca}$ and ${ }^{56} \mathrm{Ni}$

Figure from K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

The Hoyle state (7.65 MeV state in ${ }^{12} \mathrm{C}$)

Sir Fred Hoyle (1915-2001)
Helium fusion in stars
F. Hoyle, Astrophysical J. Suppl.

Ser. 11211954

Singly closed shell nuclei

R\&W Fig. 1.2

Shell-model states: many-particle bookkeeping in spherical nuclei

$N=82 \quad g_{7 / 2}+d_{5 / 2}$-dominated seniority ${ }^{*}$ structure

m scheme

B_{42} vs. B_{20} for singly closed-shell nuclei

B_{42} vs. B_{20} for singly closed-shell nuclei

Deformed bands built on excited 0^{+}states at closed shells: tin isotopes

Evidence for mixing of $\mathbf{4}_{1}{ }^{+}$and $\mathbf{4}^{+}$configurations in ${ }^{116}$ Sn

E2 transitions associated with shape coexistence in ${ }^{114-120} \mathrm{Sn}$

$\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{O}_{2}{ }^{+} \rightarrow \mathbf{2}_{1}{ }^{+}\right)$vs. $\mathrm{E}\left(\mathbf{O}_{2}{ }^{+}\right)-\mathrm{E}\left(\mathbf{2}_{1}{ }^{+}\right)$: shape coexistence and mixing yields $B\left(E 2 ; 0_{2}{ }^{+} \rightarrow 2_{1}{ }^{+}\right) \sim \alpha^{2} \beta^{2}(\Delta Q)^{2}$

Shape coexistence in the singly closed-shell lead ($Z=82$) isotopes

Figure: Heyde \& Wood
Heavy arrows indicate E0+M1+E2 transitions 188Pb: G.D. Dracoulis et al., PR C 67 R 0513012003

LECTURE 2: DISCUSSION

Some questions

- If you plan a program of half-life measurements for $2_{1}{ }^{+}$states, which ones would you choose to re-measure in the $\mathrm{Z} \geq 28, \mathrm{~N} \leq 82$ region?
- With respect to ${ }^{208} \mathrm{~Pb}$, what did Heusler et al. achieve?

Values of $\mathrm{B}\left(\mathrm{E} 2 ; \mathrm{2}_{1}{ }^{+} \rightarrow \mathrm{O}_{1}{ }^{+}\right.$) in Weisskopf units (W.u.) for nuclei in the region $\mathrm{Z} \geq 28, \mathrm{~N} \leq 82$. The heavy black dots mark the singly closed-shell nuclei at $Z=28,50$ and $N=50,82$. Solid lines connect isotopes and dashed lines connect isotones. Note the vertical compression above $100 \mathrm{~W} . u$.

Rowanwood Sect. 2.6 Fig. 2.6.3 v.7/24/16

Seniority structures for the heavy $N=82$ isotones. The structure of the higher-mass nuclei reflects the dominance of the $1 h_{11 / 2}$ orbital. The structure of ${ }^{146} \mathrm{Gd}$ exhibits a strong "depression" of the ground state energy as a result of the $\left(3 s_{1 / 2}\right)^{2}, \mathrm{v}=0$ configuration mixing with the $\left(1 \mathrm{~h}_{11 / 2}\right)^{2}, \mathrm{v}=0$ configuration. A similar ground state depression occurs in ${ }^{147} \mathrm{~Tb}$ for $\mathrm{v}=1$ configurations. The strength of the mixing of these configurations can be inferred to be $\sim 1 \mathrm{MeV}$, by visual inspection. The states with $\mathrm{J}^{\pi}=4^{+}, 6^{+}$in ${ }^{152} \mathrm{Yb}$ and ${ }^{154} \mathrm{Hf}$ are by-passed in the decay of the 8^{+}state by way of lower-lying 5^{-}and 7^{-}states. The 10^{+}state is known to influence the decays in ${ }^{154} \mathrm{Hf}$ through the isomeric nature of the decay, but the very low energy of the $10^{+} \rightarrow 8^{+}$transition was outside of the range of sensitivity of the measurements made. There are candidate 6^{+}states known in ${ }^{146} \mathrm{Gd}$, but an unambiguous assignment has not been made. The $2 d_{3 / 2}$ orbital also is influencing the low-energy structure of ${ }^{146} \mathrm{Gd}$. The energies are arbitrarily normalized at spin 8 and 27/2.

Shape coexistence in the doubly closed-shell nucleus ${ }^{16} \mathrm{O}$

Energies of states are given in keV.
$B(E 2)$ values are given in W.u.
States on the far left are spherical.

The beginnings of three deformed bands, with $K=0,0,2$, are shown.
H. Morinaga, PR 1012541956

Shape coexistence at closed shells: the $\mathbf{N}=50,82$ isotones

$$
N=50
$$

${ }^{80} \mathrm{Ge}^{*} \mathrm{E}\left(0_{2}{ }^{+}\right)=639 \mathrm{keV}$, see:
A. Gottardo et al.,

PRL 116182501 (2016)
${ }^{*} \mathrm{~N}=48$

$$
N=82
$$

EO transitions associated with shape coexistence in ${ }^{114-120} \mathrm{Sn}$

EO Transitions: shape coexistence and mixing

EO transition strengths are a measure of the off-diagonal matrix elements of the mean-square charge radius operator.

$$
\begin{aligned}
& \quad \rho^{2}(E O)=\frac{1}{\Omega \tau(E O)} \\
& \text { "Electronic factor" } \\
& \quad \Omega=\Omega(z, \Delta E)=\Omega_{K^{*}}+\Omega_{L_{i}}+\ldots+\Omega_{e^{+} e^{-}} \\
& \text {Monopole strength parameter } \\
& \rho_{\text {if }}(E 0)=\frac{\langle f| \sum_{j} e_{j} r_{j}^{2}|i\rangle}{e R^{2}} \equiv \frac{\langle f| m(E 0)|i\rangle\rangle}{e R^{2}} \equiv \frac{M_{i f}(E 0)}{e R^{2}}
\end{aligned}
$$

Ω values: http://bricc.anu.edu.au
τ : partial lifetime for EO decay branch

Mixing of configurations with different mean-square charge radii produces EO transition strength.

$$
\begin{aligned}
|\ddot{i}\rangle=\alpha|1\rangle & +\beta|2\rangle, \quad|f\rangle=-\beta|1\rangle+\alpha|2\rangle \\
M_{i f}(E 0)= & \alpha \beta\{\langle 2 / m(E 0) / 2\rangle-\langle 1| m(E 0)|1\rangle\} \\
& +\left(\alpha^{2}-\beta^{2}\right)\langle 1 / m(E 0) / 2\rangle \\
M_{i f}(E 0) \simeq & \alpha \beta \Delta\left\langle r^{2}\right\rangle
\end{aligned}
$$

J. Kantele et al. Z. Phys. A289 1571979 and see
JLW et al. Nucl. Phys. A651 3231999

The nature of the shape coexisting state in ${ }^{116} \mathrm{Sn}$ revealed by (${ }^{3} \mathrm{He}, \mathrm{n}$) transfer reaction spectroscopy

Two-state mixing

