## LaTeX Glossary

My.SUPA has been setup to allow maths to be written quickly using LaTeX notation. This can be included anywhere you see a text box in your course area -- including news or social forums, web pages and wikis. The format for entering LaTeX in My.SUPA is to wrap the code between two pairs of dollar signs. $$a=b+c$$

If you are looking at this for the first time, please read the entries under 01 Getting Started for an overview. The list of entries may be viewed by categories or alphabetically.

01 Getting Started
| 02 Arithmetic expressions | 03 Font Styles | 04 Delimiters
05 Spaces
| 06 Symbols | 07 Relations | 09 Structures | 10 Feynman Diagrams
11 Other LaTeX Software
 02 Arithmetic expressions, sub-/superscripts, roots Categories All categories Not categorised 01 Getting started 02 Arithmetic expressions, sub-/superscripts, roots 03 Font Styles 04 Delimiters (parentheses, braces,...) 05 Spaces 06 Symbols 07 Relations 09 Structures 10 Feynman 11 Other LaTeX software

#### arithmetic operations

• Type arithmetic operations and "=" as usual.
• Exp.: $$f(x)=x-2b+(3a/c)$$ gives

$f(x)=x-2b+(3a/c)$

#### constants

• Numbers in formulas are interpreted as constants and they are rendered in non-italic roman font face, which is a widely used convention.
• Following this convention, variables are shown in italic.
• Exp.: $$f(x)=3a+x$$ gives

$f(x)=3a+x$

#### fraction

• Syntax: \frac{numerator}{denominator}
• Use font sizing commands for specific sizing if you don't want the predefined one to be taken.
• Ex. (with predefined sizing): $$f(x,y)=\frac{2a}{x+y}$$ gives

$f(x,y)=\frac{2a}{x+y}$

• Ex. (with specific sizing): $$f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}$$ gives

$f(x,y)=\frac{\fs{2}2a}{\fs{2}x+y}$

• You may nest fractions as much as you want.
• Ex. (nested fractions): $$\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$$ gives

$\frac{\frac{a}{x-y}+\frac{b}{x+y}}{1+\frac{a-b}{a+b}}$

#### Function names

Function names supplied by LaTeX:

\arccos \cos \csc \exp \ker \limsup
\arcsin \cosh \deg \gcd \lg \ln
\arctan \cot \det \hom \lim \log
\arg \coth \dim \inf \liminf \max
\sinh \sup \tan \tanh \min \Pr
\sec \sin

#### multiplication (with cdot)

$$a\cdot~b$$ gives $a\cdot~b$

#### root

• Syntax: \sqrt[n]{arg} or simply  \sqrt{arg} for \sqrt[2]{arg}
• Ex.: $$\sqrt[3]{8}$$ gives

$\sqrt[3]{8}$

• Ex.: $$\sqrt{-1}$$ gives

$\sqrt{-1}$

• Nesting of roots (and combining with fractions, ...etc.) are possible.
• Ex.: $$\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}$$ gives

$\sqrt[n]{\frac{x^n-y^n}{1+u^{2n}}}$

• Ex.: $$\sqrt[3]{-q+\sqrt{q^2+p^3}}$$ gives

$\sqrt[3]{-q+\sqrt{q^2+p^3}}$

#### square root

• $$\sqrt{a}$$ or $$\sqrt~a$$ gives $\sqrt~a$
• Use braces for terms with more than one character: $$\sqrt{x+y}$$ gives

$\sqrt{x+y}$

#### subscript

• The command character "_" triggers subscription of the following expression(s).
• For more than one subscripted character put them in braces {...}.
• Use font sizing commands for appropriate sizing.
• Ex.:$$x_1$$ gives

$x_1$

• Ex.:$$a_{m+2n}$$ gives

$a_{m+2n}$

• Ex. (with specific sizing):  $$x_{\small1}=a_{\small{m+2n}}$$ gives

$x_{\small1}=a_{\small{m+2n}}$

• Combine subscripting with superscripting (command character "^").
Syntax: Expr_{subExpr}^{supExpr}.
• Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$$ gives

$A_{\small{i,j,k}}^{\small{-n+2}}$

#### superscript

• The command character "^" triggers superscription of the following expression(s).
• For more than one superscripted character put them in braces {...}.
• Use font sizing commands for appropriate sizing.
• Ex.: $$x^2$$ gives

$x^2$

• Ex.: $$a^{m+2n}$$ gives

$a^{m+2n}$

• Ex. (with specific sizing): $$x^{\small2}=a^{\small{m+2n}}$$ gives

$x^{\small2}=a^{\small{m+2n}}$

• Combine superscripting with subscripting (command character "_").
Syntax: Expr_{subExpr}^{supExpr}.
• Ex.: $$A_{\small{i,j,k}}^{\small{-n+2}}$$ gives

$A_{\small{i,j,k}}^{\small{-n+2}}$

#### variables

• Variables in formulas are rendered in italic roman font face, which is a widely used convention.
• Following this convention, constants are shown as non-italic.
• Exp.: $$f(x)=3a+x$$ gives

$f(x)=3a+x$