This course provides a comprehensive treatment of the field theoretical approach to the Standard Model of particle physics; it is taught in two parallel threads.

The QED and QCD thread begins with path integral quantisation and renormalisation of Quantum Electrodynamics (QED). It then moves on to a detailed study of Quantum Chromodynamics (QCD), beginning with quantisation, Feynman rules and renormalisation, and then applying a wide range of topics in modern perturbative QCD to collider physics, including deep inelastic scattering and Higgs production.

The electroweak physics and lattice field theory thread focuses on the field theoretical construction and application of the standard model of particle physics, including the Goldstone theorem and the Higgs mechanism, weak decays and flavour physics. Further focus is on detailed calculations in perturbation theory and comparison with experiment. The final part of the course provides an introduction to non-perturbative methods via lattice field theory.

Each thread will have two hours of lectures and two hours of tutorial workshops every week, giving a total of 40 lecture hours and 40 tutorial hours. Students are expected to engage with the material presented in lectures by working through and discussing weekly formative problem sheets in the tutorial sessions. There will be a total of 4 summative hand-ins, which will be marked and individual written feedback provided on each. Individual feedback will also be administered verbally during tutorial sessions.


Lecturers: Aidan Robson & Matthew Needham
Institution: Glasgow
Hours Equivalent Credit: 8
Assessment: Presentation

Course Summary
This course provides students with an opportunity to investigate current topics of interest relating to current Particle Physics research, and to present them. Presentations are recorded and participants receive staff and peer feedback.
Lecturer: Christine Davies
Institution: Glasgow
Hours Equivalent Credit: 6
Assessment: Project

Course Description
The course will provide an introduction into the methods of lattice QCD. In particular, we will discuss gluon actions, algorithms, quarks on the lattice, algorithms for that, how to do a lattice calculation, systematic errors and recent results.